Menü
Microbots
0
  • Lernen
  • Geschäft
    • Module & Technik
    • Maker-Packs
    • Werkzeuge und Ausrüstung
    • Robots & Displays
    • Alle Produkte
  • Gemeinschaft
    • Education
    • Software
  • Um
    • Unsere Geschichte
    • Kontakt
    • FAQs
  • Deutsch
  • Ihr Warenkorb ist leer
Microbots
  • Lernen
  • Geschäft
    • Module & Technik
    • Maker-Packs
    • Werkzeuge und Ausrüstung
    • Robots & Displays
    • Alle Produkte
  • Gemeinschaft
    • Education
    • Software
  • Um
    • Unsere Geschichte
    • Kontakt
    • FAQs
  • Sprache

  • 0 0

Using FlatFlap to Generate Buzzing Tones

FlatFlap isn’t just a flapping actuator - it can also generate buzzing tones, much like a piezo buzzer. By sending a high-frequency signal, FlatFlap can produce audible tones and vibrations, making it useful for alert systems, interactive responses, and creative sound-based installations.

While you can use any H-Bridge driver to control FlatFlap, DriveCell makes the setup compact and easy to integrate into microcontroller projects.

How FlatFlap Produces Sound

FlatFlap features a thin copper coil and an N52 neodymium magnet, creating motion when an electrical current flows through it. By rapidly switching the current direction at an audible frequency range (~100Hz–10kHz), FlatFlap can emit tones similar to a speaker or piezo buzzer.

By varying the frequency, you can:

  • Play basic tones → Useful for notifications
  • Play melodies → Generate melodies like the Super-Mario song
  • Integrate into interactive designs → Add audible feedback to projects

Wiring FlatFlap 

To generate tones, you’ll need an H-Bridge motor driver (like DriveCell) that can rapidly switch the current direction. Using DriveCell can simplifies connections and makes the setup more compact, but any standard H-Bridge module can also be used.

Basic Connection for Buzzing FlatFlap

Here’s how to wire FlatFlap to a DriveCell module:

  1. Connect H-Bridge Output Pins to FlatFlap:
    • OUT1 → FlatFlap Pad 1
    • OUT2 → FlatFlap Pad 2
  2. Connect H-Bridge Input Pins to the Microcontroller:
    • IN1 → Any digital pin
    • IN2 → Another digital pin
  3. Power Connections:
    • VCC → 5V maximum
    • GND → Common ground with the microcontroller

Controlling FlatFlap to Play Tones

FlatFlap can generate tones using PWM signals. Below is an example using DriveCell’s built-in functions for tone generation.

1. Installing the Library

  1. Open Arduino IDE
  2. Go to Library Manager
  3. Search for DriveCell and install it

2. Code Example for Playing a Tone on FlatFlap

This example makes FlatFlap buzz like a speaker, playing a sequence of tones:

#include <DriveCell.h>

#define IN1_pin1 2
#define IN1_pin2 3

DriveCell myFlatFlap(IN1_pin1, IN1_pin2);

void setup() {
  myFlatFlap.Init(); /* Initialize FlatFlap with DriveCell */
}

void loop() {
  myFlatFlap.Buzz(100);  /* Buzz at 100 microseconds */
  delay(500);
  myFlatFlap.Tone();  /* Play a fixed tone with varying frequencies */
  delay(500);
}

Understanding the Functions:

  • Buzz(duration) → Generates a buzzing effect at 100 microseconds, controlling the vibration speed.
  • Tone() → Plays an audible tone, varying its frequency automatically.

Tip: By adjusting the frequency and duty cycle, you can create different musical notes, alarms, or feedback sounds.

3. Playing the Super Mario Theme on FlatFlap

Below is another code example that plays the Super Mario song using FlatFlap:


/* Arduino Mario Bros Tunes With Piezo Buzzer and PWM
 
             by : ARDUTECH
  Connect the positive side of the Buzzer to pin 3,
  then the negative side to a 1k ohm resistor. Connect
  the other side of the 1 k ohm resistor to
  ground(GND) pin on the Arduino.
  */
  

#define NOTE_B0  31
#define NOTE_C1  33
#define NOTE_CS1 35
#define NOTE_D1  37
#define NOTE_DS1 39
#define NOTE_E1  41
#define NOTE_F1  44
#define NOTE_FS1 46
#define NOTE_G1  49
#define NOTE_GS1 52
#define NOTE_A1  55
#define NOTE_AS1 58
#define NOTE_B1  62
#define NOTE_C2  65
#define NOTE_CS2 69
#define NOTE_D2  73
#define NOTE_DS2 78
#define NOTE_E2  82
#define NOTE_F2  87
#define NOTE_FS2 93
#define NOTE_G2  98
#define NOTE_GS2 104
#define NOTE_A2  110
#define NOTE_AS2 117
#define NOTE_B2  123
#define NOTE_C3  131
#define NOTE_CS3 139
#define NOTE_D3  147
#define NOTE_DS3 156
#define NOTE_E3  165
#define NOTE_F3  175
#define NOTE_FS3 185
#define NOTE_G3  196
#define NOTE_GS3 208
#define NOTE_A3  220
#define NOTE_AS3 233
#define NOTE_B3  247
#define NOTE_C4  262
#define NOTE_CS4 277
#define NOTE_D4  294
#define NOTE_DS4 311
#define NOTE_E4  330
#define NOTE_F4  349
#define NOTE_FS4 370
#define NOTE_G4  392
#define NOTE_GS4 415
#define NOTE_A4  440
#define NOTE_AS4 466
#define NOTE_B4  494
#define NOTE_C5  523
#define NOTE_CS5 554
#define NOTE_D5  587
#define NOTE_DS5 622
#define NOTE_E5  659
#define NOTE_F5  698
#define NOTE_FS5 740
#define NOTE_G5  784
#define NOTE_GS5 831
#define NOTE_A5  880
#define NOTE_AS5 932
#define NOTE_B5  988
#define NOTE_C6  1047
#define NOTE_CS6 1109
#define NOTE_D6  1175
#define NOTE_DS6 1245
#define NOTE_E6  1319
#define NOTE_F6  1397
#define NOTE_FS6 1480
#define NOTE_G6  1568
#define NOTE_GS6 1661
#define NOTE_A6  1760
#define NOTE_AS6 1865
#define NOTE_B6  1976
#define NOTE_C7  2093
#define NOTE_CS7 2217
#define NOTE_D7  2349
#define NOTE_DS7 2489
#define NOTE_E7  2637
#define NOTE_F7  2794
#define NOTE_FS7 2960
#define NOTE_G7  3136
#define NOTE_GS7 3322
#define NOTE_A7  3520
#define NOTE_AS7 3729
#define NOTE_B7  3951
#define NOTE_C8  4186
#define NOTE_CS8 4435
#define NOTE_D8  4699
#define NOTE_DS8 4978

#define melodyPin 5
//Mario main theme melody
int melody[] = {
  NOTE_E7, NOTE_E7, 0, NOTE_E7,
  0, NOTE_C7, NOTE_E7, 0,
  NOTE_G7, 0, 0,  0,
  NOTE_G6, 0, 0, 0,

  NOTE_C7, 0, 0, NOTE_G6,
  0, 0, NOTE_E6, 0,
  0, NOTE_A6, 0, NOTE_B6,
  0, NOTE_AS6, NOTE_A6, 0,

  NOTE_G6, NOTE_E7, NOTE_G7,
  NOTE_A7, 0, NOTE_F7, NOTE_G7,
  0, NOTE_E7, 0, NOTE_C7,
  NOTE_D7, NOTE_B6, 0, 0,

  NOTE_C7, 0, 0, NOTE_G6,
  0, 0, NOTE_E6, 0,
  0, NOTE_A6, 0, NOTE_B6,
  0, NOTE_AS6, NOTE_A6, 0,

  NOTE_G6, NOTE_E7, NOTE_G7,
  NOTE_A7, 0, NOTE_F7, NOTE_G7,
  0, NOTE_E7, 0, NOTE_C7,
  NOTE_D7, NOTE_B6, 0, 0
};
//Mario main them tempo
int tempo[] = {
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,

  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,

  9, 9, 9,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,

  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,

  9, 9, 9,
  12, 12, 12, 12,
  12, 12, 12, 12,
  12, 12, 12, 12,
};
//Underworld melody
int underworld_melody[] = {
  NOTE_C4, NOTE_C5, NOTE_A3, NOTE_A4,
  NOTE_AS3, NOTE_AS4, 0,
  0,
  NOTE_C4, NOTE_C5, NOTE_A3, NOTE_A4,
  NOTE_AS3, NOTE_AS4, 0,
  0,
  NOTE_F3, NOTE_F4, NOTE_D3, NOTE_D4,
  NOTE_DS3, NOTE_DS4, 0,
  0,
  NOTE_F3, NOTE_F4, NOTE_D3, NOTE_D4,
  NOTE_DS3, NOTE_DS4, 0,
  0, NOTE_DS4, NOTE_CS4, NOTE_D4,
  NOTE_CS4, NOTE_DS4,
  NOTE_DS4, NOTE_GS3,
  NOTE_G3, NOTE_CS4,
  NOTE_C4, NOTE_FS4, NOTE_F4, NOTE_E3, NOTE_AS4, NOTE_A4,
  NOTE_GS4, NOTE_DS4, NOTE_B3,
  NOTE_AS3, NOTE_A3, NOTE_GS3,
  0, 0, 0
};
//Underwolrd tempo
int underworld_tempo[] = {
  12, 12, 12, 12,
  12, 12, 6,
  3,
  12, 12, 12, 12,
  12, 12, 6,
  3,
  12, 12, 12, 12,
  12, 12, 6,
  3,
  12, 12, 12, 12,
  12, 12, 6,
  6, 18, 18, 18,
  6, 6,
  6, 6,
  6, 6,
  18, 18, 18, 18, 18, 18,
  10, 10, 10,
  10, 10, 10,
  3, 3, 3
};

void setup(void)
{
  pinMode(5, OUTPUT);//buzzer
  pinMode(6, OUTPUT);
  digitalWrite(6, LOW);

}
void loop()
{
  //sing the tunes
  sing(1);
  sing(1);
  sing(2);
}
int song = 0;

void sing(int s) {
  // iterate over the notes of the melody:
  song = s;
  if (song == 2) {
    Serial.println(" 'Underworld Theme'");
    int size = sizeof(underworld_melody) / sizeof(int);
    for (int thisNote = 0; thisNote < size; thisNote++) {

      // to calculate the note duration, take one second
      // divided by the note type.
      //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
      int noteDuration = 1000 / underworld_tempo[thisNote];

      buzz(melodyPin, underworld_melody[thisNote], noteDuration);

      // to distinguish the notes, set a minimum time between them.
      // the note's duration + 30% seems to work well:
      int pauseBetweenNotes = noteDuration * 1.30;
      delay(pauseBetweenNotes);

      // stop the tone playing:
      buzz(melodyPin, 0, noteDuration);

    }

  } else {

    Serial.println(" 'Mario Theme'");
    int size = sizeof(melody) / sizeof(int);
    for (int thisNote = 0; thisNote < size; thisNote++) {

      // to calculate the note duration, take one second
      // divided by the note type.
      //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
      int noteDuration = 1000 / tempo[thisNote];

      buzz(melodyPin, melody[thisNote], noteDuration);

      // to distinguish the notes, set a minimum time between them.
      // the note's duration + 30% seems to work well:
      int pauseBetweenNotes = noteDuration * 1.30;
      delay(pauseBetweenNotes);

      // stop the tone playing:
      buzz(melodyPin, 0, noteDuration);

    }
  }
}

void buzz(int targetPin, long frequency, long length) {
  long delayValue = 1000000 / frequency / 2; // calculate the delay value between transitions
  //// 1 second's worth of microseconds, divided by the frequency, then split in half since
  //// there are two phases to each cycle
  long numCycles = frequency * length / 1000; // calculate the number of cycles for proper timing
  //// multiply frequency, which is really cycles per second, by the number of seconds to
  //// get the total number of cycles to produce
  for (long i = 0; i < numCycles; i++) { // for the calculated length of time...
    digitalWrite(targetPin, HIGH); // write the buzzer pin high to push out the diaphram
    delayMicroseconds(delayValue); // wait for the calculated delay value
    digitalWrite(targetPin, LOW); // write the buzzer pin low to pull back the diaphram
    delayMicroseconds(delayValue); // wait again or the calculated delay value
  }

}

Conclusion

As we've seen, FlatFlap can also produce buzzing tones when controlled with an H-Bridge module like DriveCell. Check out the DriveCell GitHub Repository for more code examples and technical documentation!

  • Teilen:


Vollständigen Artikel anzeigen

FlatFlap - Creating Position Control
FlatFlap - Creating Position Control

Vollständigen Artikel anzeigen

FlatFlap - Creating Pulsing Motion
FlatFlap - Creating Pulsing Motion

Vollständigen Artikel anzeigen

FlatFlap - Creating Flapping Motion
FlatFlap - Creating Flapping Motion

Vollständigen Artikel anzeigen

Sozial

Github

  • Um
  • Software
  • Education
  • Kontakt
  • FAQs
  • Bedingungen
  • Rückerstattung-Politik
  • Datenschutzrichtlinie

Erfahren Sie als Erster von neuen Projekten und sichern Sie sich spannende Angebote!

© 2025 Microbots.