Menü
Microbots
0
  • Lernen
  • Geschäft
    • Module & Technik
    • Maker-Packs
    • Werkzeuge und Ausrüstung
    • Robots & Displays
    • Alle Produkte
  • Gemeinschaft
    • Education
    • Software
  • Um
    • Unsere Geschichte
    • Kontakt
    • FAQs
  • Deutsch
  • Ihr Warenkorb ist leer
Microbots
  • Lernen
  • Geschäft
    • Module & Technik
    • Maker-Packs
    • Werkzeuge und Ausrüstung
    • Robots & Displays
    • Alle Produkte
  • Gemeinschaft
    • Education
    • Software
  • Um
    • Unsere Geschichte
    • Kontakt
    • FAQs
  • Sprache

  • 0 0

Spulenpolster

CoilPad - Creating a Magnetic Sensor

CoilPad - Creating a Magnetic Sensor

CoilPad is a flexible, ultra-thin PCB coil that can be adapted for various applications, including metal detection. By pairing CoilPad with a capacitor, you can create an LC oscillator that responds to the presence of metal objects. Additionally, two CoilPad can be used as a poor transformer, enough to wirelessly transmit data or even wirelessly power an LED! 

How It Works

When a capacitor is placed in parallel with CoilPad, it forms an LC circuit (inductor-capacitor circuit). When driven at its resonant frequency, this circuit oscillates. If a metal object comes near, it disturbs the field, altering the circuit’s frequency. This change can be detected, allowing CoilPad to function as a simple metal detector.

Setting Up the LC Oscillator for Metal Detection

To turn CoilPad into a metal detector, you need:

  • CoilPad (acts as the inductor)
  • A capacitor (to form the LC circuit)
  • A DriveCell to drive the coil
  • A microcontroller (such as CodeCell or an ESP32) to read the frequency changes

Circuit Setup:

  1. Connect a capacitor in parallel with CoilPad to create an LC resonant circuit.
  2. Use a microcontroller to generate a square wave at the circuit’s resonant frequency.
  3. Measure frequency shifts using a microcontroller’s input pin or frequency counter.
  4. Detect metal – When metal is placed near the coil, it alters the inductance, shifting the frequency.

Example Code

#define COIL_PIN 2
void setup() {
  pinMode(COIL_PIN, INPUT);
  Serial.begin(115200);
}
void loop() {
  int freq = pulseIn(COIL_PIN, HIGH);
  Serial.println(freq);
  delay(100);
}

This code reads the frequency and prints it to the serial monitor, allowing you to observe frequency changes when metal is nearby.

Using Two CoilPad for Wireless Transfer

CoilPad can also be used for wireless transfer by pairing two CoilPads tuned to the same resonant frequency.

How It Works:

  1. One CoilPad acts as a transmitter – driven at its resonant frequency.
  2. A second CoilPad + Capacitor – picks up the oscillating magnetic field.

Circuit Setup:

  • Transmitter: Connect a CoilPad to a DriveCell and a microcontroller to generate a PWM signal at the resonant frequency.
  • Receiver: Attach a second CoilPad with a capacitor in parallel and an LED in parallel. The value of the capacitor  will depend on the resonant frequency you use and can be calculated using this equation:

Where L is the inductance of the CoilPad which is 30.7uH 

Example DriveCell Transmitter Code:

#define COILPAD_PIN1 2
#define COILPAD_PIN2 3

void setup() {
  pinMode(COILPAD_PIN1, OUTPUT);
  pinMode(COILPAD_PIN2, OUTPUT);
}

void loop() {
  digitalWrite(COILPAD_PIN1, HIGH);
  digitalWrite(COILPAD_PIN2, LOW);
  delayMicroseconds(5); // 100kHz Resonant Frequency - Adjust delay for desired resonant frequency
  
  digitalWrite(COILPAD_PIN1, LOW);
  digitalWrite(COILPAD_PIN2, HIGH);
  delayMicroseconds(5);
}

When the receiver CoilPad is placed nearby, the LED should glow, demonstrating wireless transfer.

Beyond power transfer, you can also use CoilPad to transmit data by modulating the signal frequency on the transmitter side and detecting changes on the receiver side. How cool is that!

Conclusion

With these techniques, you can start using CoilPad to sense metal or even as a wireless antenna. 

Ready to start experimenting? Grab a CoilPad today and bring motion to your next project!

Vollständigen Artikel anzeigen

CoilPad - Creating a Micro-Heater

CoilPad - Creating a Micro-Heater

CoilPad is a flexible, ultra-thin sticker coil intended to be used as a magnetic actuator. However it can also be hacked into a micro-heater for some specialized applications.  actuator that can also function as a micro-heater. 

By adjusting the PWM waveform, you can vary the heat generated.

Safety Considerations

  • Always handle CoilPad with care, as it can become hot.
  • Ensure that the surface it is attached to can withstand high temperatures.
  • Avoid direct skin contact when powered.
  • Use proper insulation if needed.

How It Works

When powered at a constant 5V, CoilPad can reach up to 100°C. This makes it suitable for applications requiring a compact and seamless heating element. Varying the input voltage, directly controls the output heat - so by powering the CoilPad with a Pulse width modulation (PWM) signal instead of constant power, we can also vary the heat. A higher duty cycle results in increased heat output, while a lower duty cycle maintains a lower temperature.

Heat Control

Several factors affect the heating performance of CoilPad:

  • Voltage Level – The maximum operating voltage is 5V. Higher voltages are not recommended as they may cause overheating or damage.
  • Duty Cycle – Adjusting the duty cycle of the PWM signal controls the heat output, allowing precise temperature regulation.
  • Thermal Dissipation – The surface to which CoilPad is attached will affect how heat is distributed and retained.

Using DriveCell to Control Heat Output

If you are using the DriveCell library, you can easily control the CoilPad as a micro-heater with the following example:

#include <drivecell.h>

#define HEATER_PIN1 2
#define HEATER_PIN2 3
DriveCell Heater(HEATER_PIN1, HEATER_PIN2);

void setup() {
  Heater.Init();
}

void loop() {
  Heater.Drive(true, 100); // Maximum heat output
  delay(5000);
  
  Heater.Drive(true, 75); // Reduce heat to 75%
  delay(5000);
  
  Heater.Drive(true, 50); // Moderate heat at 50%
  delay(5000);
  
  Heater.Drive(true, 25); // Low heat at 25%
  delay(5000);
}

Understanding the Functions:

  • Init() → Initializes DriveCell and sets up the input pins.
  • Drive(bool direction, uint8_t power_percent)
    • direction: true (activates the heating element)
    • power_percent: Adjusts the heat output (0 to 100%)

⚠ Note: The Drive() function uses a high-speed PWM timer, making it compatible only with CodeCell and ESP32-based devices.

If you're using a standard Arduino, you can control the heat output using the following code. However, ensure that the waveform frequency is set correctly ideally ~20kHz

#define HEATER_PIN 2

void setup() {
  pinMode(HEATER_PIN, OUTPUT);
}

void loop() {
  analogWrite(HEATER_PIN, 255); // Maximum heat output
  delay(5000);
  
  analogWrite(HEATER_PIN, 191); // 75% Heat
  delay(5000);
  
  analogWrite(HEATER_PIN, 127); // 50% Heat
  delay(5000);
  
  analogWrite(HEATER_PIN, 63); // 25% Heat
  delay(5000);
}

 

Conclusion

As we've learned by utilizing PWM control, CoilPad can be hacked into a micro-heater! Check out the DriveCell GitHub Repository for more code examples and technical documentation!

Vollständigen Artikel anzeigen

CoilPad - Creating Vibration

CoilPad - Creating Vibration

This guide explains how the CoilPad can generate vibrations, how frequency and polarity affect its movement, and how to create its drive signals.

How it Works?

To make CoilPad vibrate, an electric current is applied to its coil, generating a magnetic field. By reversing the polarity at a set frequency, we create a repetitive push-pull motion that causes vibrations.

The vibration frequency can be controlled within the range of 1 Hz to 25 Hz, which means CoilPad can oscillate between 1 to 25 times per second depending on the input signal. It can go to higher frequencies, but usually the magnet won't have enough time to react.

If you attach it to something, you can adjust it to match its new resonant frequency and make the whole thing shake.

Generating a Square Wave for Vibration

A square wave signal is required to make the CoilPad vibrate. An H-Bridge driver like our DriveCell is needed reverse its polarity and switch its polarity to make it vibrate. The input signals of the square wave can be generated using simple digitalWrite() commands in Arduino:

#define VIB_PIN1 2
#define VIB_PIN2 3

void setup() {
  pinMode(VIB_PIN1, OUTPUT);
  pinMode(VIB_PIN2, OUTPUT);
}

void loop() {
  digitalWrite(VIB_PIN1, HIGH);
  digitalWrite(VIB_PIN2, LOW);
  delay(100); // Adjust delay for desired vibration speed
  
  digitalWrite(VIB_PIN1, LOW);
  digitalWrite(VIB_PIN2, HIGH);
  delay(100);
}

This simple code creates a square wave oscillation, making the CoilPad vibrate continuously. You can adjust the delay time to change the vibration frequency.

Optimizing Vibration with PWM

The code example above generates a basic square wave, which drives the coil in an abrupt on-off manner. At low frequencies, this might not be desirable. To smooth this out, we can use Pulse Width Modulation (PWM) on both outputs. This method gradually changes the magnetic field intensity, reducing mechanical stress on the CoilPad.

This function is automatically handled within our DriveCell library:

#include <drivecell.h>

#define IN1_pin1 2
#define IN1_pin2 3
#define IN2_pin1 5
#define IN2_pin2 6

DriveCell CoilPad1(IN1_pin1, IN1_pin2);
DriveCell CoilPad2(IN2_pin1, IN2_pin2);

uint16_t vibration_counter = 0;

void setup() {
  CoilPad1.Init();
  CoilPad2.Init();

  CoilPad1.Tone();
  CoilPad2.Tone();
}

void loop() {
  delay(1);
  vibration_counter++;
  if (vibration_counter < 2000U) {
    CoilPad1.Run(0, 100, 100); // Square Wave mode
    CoilPad2.Run(0, 100, 100); // Square Wave mode
  }
  else if (vibration_counter < 8000U) {
    CoilPad1.Run(1, 100, 1000); // Smooth PWM Wave mode
    CoilPad2.Run(1, 100, 1000); // Smooth PWM Wave mode
  } else {
    vibration_counter = 0U;
  }
}

Understanding the Functions:

  • Init() → Initializes DriveCell and sets up the input pins.
  • Run(smooth, power, speed_ms) → Oscillates the CoilPad in either a square wave or a smoother PWM wave.
    • smooth → 1 (PWM wave) / 0 (square wave)
    • power → Magnetic-field strength (0 to 100%)
    • speed_ms → Vibration speed in milliseconds

⚠ Note: The Run() & Drive() function uses a high-speed PWM timer, making it compatible only with CodeCell and ESP32-based devices.

Conclusion

With these techniques, you can start using CoilPad to vibrate. Check out the DriveCell GitHub Repository for more code examples and technical documentation!

Vollständigen Artikel anzeigen

Understanding CoilPad

Understanding CoilPad

When working on projects that require movement or actuation, traditional motors can be bulky and challenging to integrate into compact designs. This is where CoilPad stands out - an incredibly thin coil designed to bring motion to your projects without taking any additional area.

In this post, we’ll explore the CoilPad’s fundamentals, functionality, and integration into your projects.

What is CoilPad?

The CoilPad is a magnetic sticker actuator - just 0.1mm thin, flexible, and designed to stick onto flat or curved surfaces with a maximum bending radius of 18mm.

By adding a magnet, you can create oscillating motion, turning it into a tiny actuator, converting electrical energy into mechanical movement. You can also hack it into the thin buzzer, micro-heater, or metal-detector!

How Does CoilPad Work?

When an electric current flows through its ultra-thin coil, it generates a magnetic field that interacts with external magnets. Depending on the current's direction, the magnet will either be attracted or repelled, creating movement.

By applying a square wave signal, the CoilPad can also vibrate, flap or oscillate continuously with adjustable speed and intensity.

  • Apply a voltage (5V) to one pin and ground (0V) to the other, a magnet is repelled or attracted. Reverse the polarity, makes the magnet moves in the opposite direction.
  • Use an H-Bridge or transistor to automate switching and make a CoilPad vibrate, flap or oscillate. An h-bridge like our tiny DriveCell modules, can adjust the speed of the oscillations and also the magnetic field strength of the coil, via Pulse width modulation (PWM). 
  • Adding an iron or steel plate beneath the CoilPad doubles the magnetic field strength, turning it into a very weak electromagnet.
  • When powering CoilPad at a constant 5V, can reach up to 100°C making it very useful as a micro-heater. However handle it with care to prevent injury.

    Installing CoilPad

    The CoilPad comes with a peelable adhesive back, allowing for quick and secure installation. Here’s how to apply it:

    1. Clean the surface before attaching the CoilPad for a firm grip.

    2. Peel off the adhesive cover using tweezers before powering the CoilPad.

    3. Stick it onto the surface, ensuring it stays in place during operation.

    4. Solder the terminals to your control circuit to start actuation.

    Note: Always remove the adhesive cover before powering on the CoilPad to prevent damage to the adhesive layer.

    Getting Your CoilPad Moving

    To test your CoilPad:

    1. Connect one pin to 5V and the other to ground – this will create an initial magnetic attraction or repulsion.

    2. Swap the connections – reversing the polarity will switch the movement.

    3. For continuous operation, use an H-Bridge circuit to automate the polarity switching. An H-Bridge is a circuit configuration composed of four transistors arranged in an "H" shape, allowing for bidirectional control of an actuator by reversing the current flow.

    Keep things tiny

    Solder the CoilPad directly to our DriveCell module to keep things compact. This has a DRV8837 H-Bridge driver packed into the smallest package, designed to handle low-power DC motors and actuators. 

    Ready to start experimenting? Grab a CoilPad today and bring motion to your next project!

    Vollständigen Artikel anzeigen

    Using CoilPad to Generate Buzzing Tones

    Using CoilPad to Generate Buzzing Tones

    CoilPad isn’t just a flexible coil actuator – it can also generate buzzing tones, much like a piezo buzzer. By sending a high-frequency signal, CoilPad can produce audible tones and vibrations, making it useful for alert systems, interactive responses, and creative sound-based installations.

    While you can use any H-Bridge driver to control CoilPad, DriveCell makes the setup compact and easy to integrate into microcontroller projects.

    How CoilPad Produces Sound

    CoilPad uses a thin copper coil and an N52 neodymium magnet, creating motion when an electrical current flows through it. By rapidly switching the current direction at an audible frequency range (~100Hz–10kHz), CoilPad can emit tones similar to a speaker or piezo buzzer.

    By varying the frequency, you can:

    • Play basic tones → Useful for notifications
    • Play melodies → Generate melodies like the Super Mario song
    • Integrate into interactive designs → Add audible feedback to projects

    Wiring CoilPad 

    To generate tones, you’ll need an H-Bridge motor driver (like DriveCell) that can rapidly switch the current direction. Using DriveCell can simplifies connections and makes the setup more compact, but any standard H-Bridge module can also be used.

    Basic Connection for Buzzing CoilPad

    Here’s how to wire CoilPad to a DriveCell module:

    1. Connect H-Bridge Output Pins to CoilPad:
      • OUT1 → CoilPad Pad 1
      • OUT2 → CoilPad Pad 2
    2. Connect H-Bridge Input Pins to the Microcontroller:
      • IN1 → Any digital pin
      • IN2 → Another digital pin
    3. Power Connections:
      • VCC → 5V maximum
      • GND → Common ground with the microcontroller


    Controlling CoilPad to Play Tones

    CoilPad can generate tones using PWM signals. Below is an example using DriveCell’s built-in functions for tone generation.

    1. Installing the Library

    1. Open Arduino IDE
    2. Go to Library Manager
    3. Search for DriveCell and install it

    2. Code Example for Playing a Tone on CoilPad

    This example makes CoilPad buzz like a speaker, playing a sequence of tones:

    #include <DriveCell.h>
    
    #define IN1_pin1 2
    #define IN1_pin2 3
    
    DriveCell myCoilPad(IN1_pin1, IN1_pin2);
    
    void setup() {
      myCoilPad.Init(); /* Initialize FlatFlap with DriveCell */
      myCoilPad.Tone();  /* Play a fixed tone with varying frequencies */
      delay(500);
    }
    
    void loop() {
      myCoilPad.Buzz(100);  /* Buzz at 100 microseconds */
    }

    Understanding the Functions:

    • Buzz(duration) → Generates a buzzing effect at 100 microseconds, controlling the vibration speed.
    • Tone() → Plays an audible tone, varying its frequency automatically.

    Tip: By adjusting the frequency and duty cycle, you can create different musical notes, alarms, or feedback sounds.

    3. Playing the Super Mario Theme on CoilPad

    Below is another code example that plays the Super Mario song using CoilPad:

    
    /* Arduino Mario Bros Tunes With Piezo Buzzer and PWM
     
                 by : ARDUTECH
      Connect the positive side of the Buzzer to pin 3,
      then the negative side to a 1k ohm resistor. Connect
      the other side of the 1 k ohm resistor to
      ground(GND) pin on the Arduino.
      */
      
    
    #define NOTE_B0  31
    #define NOTE_C1  33
    #define NOTE_CS1 35
    #define NOTE_D1  37
    #define NOTE_DS1 39
    #define NOTE_E1  41
    #define NOTE_F1  44
    #define NOTE_FS1 46
    #define NOTE_G1  49
    #define NOTE_GS1 52
    #define NOTE_A1  55
    #define NOTE_AS1 58
    #define NOTE_B1  62
    #define NOTE_C2  65
    #define NOTE_CS2 69
    #define NOTE_D2  73
    #define NOTE_DS2 78
    #define NOTE_E2  82
    #define NOTE_F2  87
    #define NOTE_FS2 93
    #define NOTE_G2  98
    #define NOTE_GS2 104
    #define NOTE_A2  110
    #define NOTE_AS2 117
    #define NOTE_B2  123
    #define NOTE_C3  131
    #define NOTE_CS3 139
    #define NOTE_D3  147
    #define NOTE_DS3 156
    #define NOTE_E3  165
    #define NOTE_F3  175
    #define NOTE_FS3 185
    #define NOTE_G3  196
    #define NOTE_GS3 208
    #define NOTE_A3  220
    #define NOTE_AS3 233
    #define NOTE_B3  247
    #define NOTE_C4  262
    #define NOTE_CS4 277
    #define NOTE_D4  294
    #define NOTE_DS4 311
    #define NOTE_E4  330
    #define NOTE_F4  349
    #define NOTE_FS4 370
    #define NOTE_G4  392
    #define NOTE_GS4 415
    #define NOTE_A4  440
    #define NOTE_AS4 466
    #define NOTE_B4  494
    #define NOTE_C5  523
    #define NOTE_CS5 554
    #define NOTE_D5  587
    #define NOTE_DS5 622
    #define NOTE_E5  659
    #define NOTE_F5  698
    #define NOTE_FS5 740
    #define NOTE_G5  784
    #define NOTE_GS5 831
    #define NOTE_A5  880
    #define NOTE_AS5 932
    #define NOTE_B5  988
    #define NOTE_C6  1047
    #define NOTE_CS6 1109
    #define NOTE_D6  1175
    #define NOTE_DS6 1245
    #define NOTE_E6  1319
    #define NOTE_F6  1397
    #define NOTE_FS6 1480
    #define NOTE_G6  1568
    #define NOTE_GS6 1661
    #define NOTE_A6  1760
    #define NOTE_AS6 1865
    #define NOTE_B6  1976
    #define NOTE_C7  2093
    #define NOTE_CS7 2217
    #define NOTE_D7  2349
    #define NOTE_DS7 2489
    #define NOTE_E7  2637
    #define NOTE_F7  2794
    #define NOTE_FS7 2960
    #define NOTE_G7  3136
    #define NOTE_GS7 3322
    #define NOTE_A7  3520
    #define NOTE_AS7 3729
    #define NOTE_B7  3951
    #define NOTE_C8  4186
    #define NOTE_CS8 4435
    #define NOTE_D8  4699
    #define NOTE_DS8 4978
    
    #define melodyPin 5
    //Mario main theme melody
    int melody[] = {
      NOTE_E7, NOTE_E7, 0, NOTE_E7,
      0, NOTE_C7, NOTE_E7, 0,
      NOTE_G7, 0, 0,  0,
      NOTE_G6, 0, 0, 0,
    
      NOTE_C7, 0, 0, NOTE_G6,
      0, 0, NOTE_E6, 0,
      0, NOTE_A6, 0, NOTE_B6,
      0, NOTE_AS6, NOTE_A6, 0,
    
      NOTE_G6, NOTE_E7, NOTE_G7,
      NOTE_A7, 0, NOTE_F7, NOTE_G7,
      0, NOTE_E7, 0, NOTE_C7,
      NOTE_D7, NOTE_B6, 0, 0,
    
      NOTE_C7, 0, 0, NOTE_G6,
      0, 0, NOTE_E6, 0,
      0, NOTE_A6, 0, NOTE_B6,
      0, NOTE_AS6, NOTE_A6, 0,
    
      NOTE_G6, NOTE_E7, NOTE_G7,
      NOTE_A7, 0, NOTE_F7, NOTE_G7,
      0, NOTE_E7, 0, NOTE_C7,
      NOTE_D7, NOTE_B6, 0, 0
    };
    //Mario main them tempo
    int tempo[] = {
      12, 12, 12, 12,
      12, 12, 12, 12,
      12, 12, 12, 12,
      12, 12, 12, 12,
    
      12, 12, 12, 12,
      12, 12, 12, 12,
      12, 12, 12, 12,
      12, 12, 12, 12,
    
      9, 9, 9,
      12, 12, 12, 12,
      12, 12, 12, 12,
      12, 12, 12, 12,
    
      12, 12, 12, 12,
      12, 12, 12, 12,
      12, 12, 12, 12,
      12, 12, 12, 12,
    
      9, 9, 9,
      12, 12, 12, 12,
      12, 12, 12, 12,
      12, 12, 12, 12,
    };
    //Underworld melody
    int underworld_melody[] = {
      NOTE_C4, NOTE_C5, NOTE_A3, NOTE_A4,
      NOTE_AS3, NOTE_AS4, 0,
      0,
      NOTE_C4, NOTE_C5, NOTE_A3, NOTE_A4,
      NOTE_AS3, NOTE_AS4, 0,
      0,
      NOTE_F3, NOTE_F4, NOTE_D3, NOTE_D4,
      NOTE_DS3, NOTE_DS4, 0,
      0,
      NOTE_F3, NOTE_F4, NOTE_D3, NOTE_D4,
      NOTE_DS3, NOTE_DS4, 0,
      0, NOTE_DS4, NOTE_CS4, NOTE_D4,
      NOTE_CS4, NOTE_DS4,
      NOTE_DS4, NOTE_GS3,
      NOTE_G3, NOTE_CS4,
      NOTE_C4, NOTE_FS4, NOTE_F4, NOTE_E3, NOTE_AS4, NOTE_A4,
      NOTE_GS4, NOTE_DS4, NOTE_B3,
      NOTE_AS3, NOTE_A3, NOTE_GS3,
      0, 0, 0
    };
    //Underwolrd tempo
    int underworld_tempo[] = {
      12, 12, 12, 12,
      12, 12, 6,
      3,
      12, 12, 12, 12,
      12, 12, 6,
      3,
      12, 12, 12, 12,
      12, 12, 6,
      3,
      12, 12, 12, 12,
      12, 12, 6,
      6, 18, 18, 18,
      6, 6,
      6, 6,
      6, 6,
      18, 18, 18, 18, 18, 18,
      10, 10, 10,
      10, 10, 10,
      3, 3, 3
    };
    
    void setup(void)
    {
      pinMode(5, OUTPUT);//buzzer
      pinMode(6, OUTPUT);
      digitalWrite(6, LOW);
    
    }
    void loop()
    {
      //sing the tunes
      sing(1);
      sing(1);
      sing(2);
    }
    int song = 0;
    
    void sing(int s) {
      // iterate over the notes of the melody:
      song = s;
      if (song == 2) {
        Serial.println(" 'Underworld Theme'");
        int size = sizeof(underworld_melody) / sizeof(int);
        for (int thisNote = 0; thisNote < size; thisNote++) {
    
          // to calculate the note duration, take one second
          // divided by the note type.
          //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
          int noteDuration = 1000 / underworld_tempo[thisNote];
    
          buzz(melodyPin, underworld_melody[thisNote], noteDuration);
    
          // to distinguish the notes, set a minimum time between them.
          // the note's duration + 30% seems to work well:
          int pauseBetweenNotes = noteDuration * 1.30;
          delay(pauseBetweenNotes);
    
          // stop the tone playing:
          buzz(melodyPin, 0, noteDuration);
    
        }
    
      } else {
    
        Serial.println(" 'Mario Theme'");
        int size = sizeof(melody) / sizeof(int);
        for (int thisNote = 0; thisNote < size; thisNote++) {
    
          // to calculate the note duration, take one second
          // divided by the note type.
          //e.g. quarter note = 1000 / 4, eighth note = 1000/8, etc.
          int noteDuration = 1000 / tempo[thisNote];
    
          buzz(melodyPin, melody[thisNote], noteDuration);
    
          // to distinguish the notes, set a minimum time between them.
          // the note's duration + 30% seems to work well:
          int pauseBetweenNotes = noteDuration * 1.30;
          delay(pauseBetweenNotes);
    
          // stop the tone playing:
          buzz(melodyPin, 0, noteDuration);
    
        }
      }
    }
    
    void buzz(int targetPin, long frequency, long length) {
      long delayValue = 1000000 / frequency / 2; // calculate the delay value between transitions
      //// 1 second's worth of microseconds, divided by the frequency, then split in half since
      //// there are two phases to each cycle
      long numCycles = frequency * length / 1000; // calculate the number of cycles for proper timing
      //// multiply frequency, which is really cycles per second, by the number of seconds to
      //// get the total number of cycles to produce
      for (long i = 0; i < numCycles; i++) { // for the calculated length of time...
        digitalWrite(targetPin, HIGH); // write the buzzer pin high to push out the diaphram
        delayMicroseconds(delayValue); // wait for the calculated delay value
        digitalWrite(targetPin, LOW); // write the buzzer pin low to pull back the diaphram
        delayMicroseconds(delayValue); // wait again or the calculated delay value
      }
    
    }
    

    Conclusion

    As we've seen, CoilPad can also produce buzzing tones when controlled with an H-Bridge module like DriveCell. Check out the DriveCell GitHub Repository for more code examples and technical documentation!

    Vollständigen Artikel anzeigen

    CoilPad Basics: Your First Steps

    CoilPad-Grundlagen: Ihre ersten Schritte

    Das CoilPad ist ein unglaublich dünner und innovativer Aktuator, der in einem kompakten Formfaktor Bewegung in Ihre Projekte bringt. Um zu verstehen, wie es funktioniert, tauchen wir in sein einzigartiges Design und die Prinzipien hinter seiner Funktionsweise ein.

    In diesem Tutorial erklären wir:

    • Was ist ein CoilPad und wie funktioniert es?
    • So steuern Sie Polarität, Position und Geschwindigkeit
    • Herstellung des CoilPads interaktiver mit den CodeCell -Sensoren

    Was ist ein CoilPad?

    Das CoilPad ist ein Aktuator aus einer flexiblen Planarspule, die nahtlos an jeder glatten Oberfläche haftet. Durch Hinzufügen eines Magneten verwandelt es sich in ein Gerät, das magnetische Bewegungen, Summen oder sogar Heizen ermöglicht. Es ist so konzipiert, dass es elektrische Energie mühelos in mechanische Bewegung umwandelt.

    Wie funktioniert es?

    Das CoilPad verfügt über eine flache, ultradünne Spule, die mit externen Magneten interagiert. Wenn ein elektrischer Strom durch die Spule fließt, erzeugt sie ein Magnetfeld, das den Magneten entweder anzieht oder abstößt und so eine Bewegung verursacht. Durch Ändern der Stromrichtung können Sie die Bewegung des CoilPads steuern. Durch Anlegen eines Rechtecksignals schwingt das CoilPad kontinuierlich mit einstellbarer Geschwindigkeit und Intensität. Für sanfte, organische Bewegungen werden wir die DriveCell PWM-Bibliothek erkunden.

    CoilPad installieren

    Das CoilPad -Design erleichtert die Installation. Es verfügt über eine abziehbare Kleberückseite, die sicherstellt, dass es fest auf jeder glatten Oberfläche haftet.

    Bringen Sie Ihr CoilPad in Bewegung

    Sie können mit dem Testen beginnen, indem Sie einen seiner Pins auf 5 V und den anderen auf Masse ziehen und sie dann umschalten. In einem Fall wird der Magnet abgestoßen, im anderen angezogen. Sie können es an Ihre eigenen Transistoren oder Ihr H-Brückenmodul anschließen, um diese Pins automatisch umzuschalten. Um es noch einfacher zu machen, können Sie unser kleines DriveCell- Modul kaufen. DriveCell ist ein kompakter, Pin-zu-Pin-kompatibler H-Brückentreiber, der die Steuerung von Aktuatoren wie dem CoilPad vereinfacht. Seine Open-Source-Arduino-Softwarebibliothek macht die Aktuatorsteuerung besonders für Anfänger einfach, indem sie unkomplizierte Softwarefunktionen und leicht verständliche Beispiele bietet.

    Eine ausführliche Anleitung zur DriveCell- Softwarebibliothek finden Sie in diesem Artikel . Hier ist jedoch eine kurze Zusammenfassung, wie Sie deren Funktionen nutzen können, um die CoilPad -Betätigung zu verbessern. Keine Sorge, es ist ganz einfach! Laden Sie zunächst die Bibliothek „DriveCell“ aus dem Bibliotheksmanager von Arduino herunter. Nach der Installation können Sie Ihr Gerät steuern. Bevor wir beginnen, stellen Sie sicher, dass Sie die DriveCell an Ihren Mikrocontroller anschließen. Wir empfehlen die Verwendung einer CodeCell, die Pin-zu-Pin-kompatibel ist, alle Bibliotheksfunktionen unterstützt und Ihrem CoilPad drahtlose Steuerung und interaktive Sensorik hinzufügen kann.

    1. Init()

    Zunächst benötigen wir einen grundlegenden Setup-Code, damit Sie loslegen können:

     #include <DriveCell.h> // This line includes the DriveCell library
    
     DriveCell myCoilPad(IN1, IN2); // Replace IN1 and IN2 with your specific pins
    
     void setup() {
     myCoilPad.Init(); // Initializes your DriveCell connected to a CoilPad
     }
    

    Dieser Code gibt Ihrer DriveCell den Namen „myCoilPad“ und weist sie an, alle erforderlichen Peripheriegeräte zu starten und zu initialisieren.

    2. Puls (bool Richtung, uint8_t ms_Dauer)

    Diese Funktion sendet einen kurzen Stromstoß mit einer bestimmten Polarität an das CoilPad . Dieses schnelle Aktivieren und Deaktivieren kann je nach Polarität eine kurze, heftige Bewegung des CoilPads verursachen.

    myCoilPad.Pulse(1, 10); // Sends a short burst for 10 milliseconds in the specified direction

    3. Buzz (uint16_t us_buzz)

    Diese Funktion lässt das CoilPad wie einen Summer vibrieren, was zur Erzeugung einer akustischen Rückmeldung nützlich ist.

     myCoilPad.Buzz(100); // Makes the CoilPad buzz with a 100 microsecond pulses
    

    4. Ton()

    Mit der Tone -Funktion kann das CoilPad einen Ton abspielen. Dies kann für akustisches Feedback oder kreative Anwendungen verwendet werden, bei denen Ton Teil der Interaktion ist.

     myCoilPad.Tone(); // Plays a tone by varying the frequency
    

    5. Umschalten (uint8_t power_percent)

    Diese Funktion schaltet die CoilPad- Polarität um, was nützlich sein kann, um in Ihrem Code eine schnelle Schlagbewegung zu erzeugen oder die Richtung schnell umzukehren.

     myCoilPad.Toggle(100); // Toggles direction at 100% power

    6. Ausführen (bool glatt, uint8_t Leistungsprozentsatz, uint16_t Flip-Geschwindigkeit_ms)

    Mit dieser Funktion können Sie die Polarität des CoilPads kontinuierlich umkehren und seine Bewegungsgeschwindigkeit und -glätte steuern. Wenn smooth auf true eingestellt ist, ist die Betätigung weniger scharf und sanfter, was ideal für langsamere, kontrollierte Bewegungen ist.

     myCoilPad.Run(true, 50, 1000); // Runs the CoilPad smoothly at 50% power, flipping every 1000 milliseconds

    7. Antrieb (bool Richtung, uint8_t Leistung_Prozent)

    Mit dieser Funktion können Sie die Polarität des CoilPads und seine magnetische Feldstärke durch Anpassen des Leistungspegels steuern.

     myCoilPad.Drive(true, 75); // Moves the CoilPad forward at 75% power

    Beispiele:

    Hier ist ein Beispiel, bei dem wir zwei CoilPads konfigurieren und sie mit zwei verschiedenen Geschwindigkeiten betätigen:

     #include <DriveCell.h>
    
     #define IN1_pin1 2
     #define IN1_pin2 3
     #define IN2_pin1 5
     #define IN2_pin2 6
    
     DriveCell CoilPad1(IN1_pin1, IN1_pin2);
     DriveCell CoilPad2(IN2_pin1, IN2_pin2);
    
     uint16_t c_counter = 0;
    
     void setup() {
     CoilPad1.Init();
     CoilPad2.Init();
    
     CoilPad1.Tone();
     CoilPad2.Tone();
     }
    
     void loop() {
     delay(1);
     c_counter++;
     if (c_counter < 2000U) {
     CoilPad1.Run(0, 100, 100);
     CoilPad2.Run(0, 100, 100);
     }
     else if (c_counter < 8000U) { 
    CoilPad1.Run(1, 100, 1000);
     CoilPad2.Run(1, 100, 1000);
     } anders {
     c_Zähler = 0U;
     }
     }

    Kombination mit CodeCell-Sensoren

    Um es noch interaktiver zu machen, können Sie CoilPad und DriveCell mit dem winzigen CodeCell-Sensormodul kombinieren. CodeCell ist Pin-zu-Pin-kompatibel mit DriveCell , unterstützt alle Bibliotheksfunktionen und kann Ihrem Projekt drahtlose Steuerung und interaktive Sensorik hinzufügen. Auf diese Weise können Sie mit Ihren CoilPad- Aktuatoren fortgeschrittenere, reaktionsfähigere Elemente erstellen.

    Mit diesem nächsten Beispiel steuert die CodeCell zwei CoilPads , die aufhören zu flattern, wenn eine Annäherung erkannt wird. Ihr Magnetfeld wird dynamisch angepasst, je nachdem, wie nahe Ihre Hände kommen. Wenn keine Hand erkannt wird, wechselt die CoilPad- Polarität alle 400 Millisekunden.

     #include <CodeCell.h>
     #include <DriveCell.h>
    
     #define IN1_pin1 2
     #define IN1_pin2 3
     #define IN2_pin1 5
     #define IN2_pin2 6
    
     DriveCell CoilPad1(IN1_pin1, IN1_pin2);
     DriveCell CoilPad2(IN2_pin1, IN2_pin2);
    
     CodeCell myCodeCell;
    
     void setup() {
     Serial.begin(115200);
    
     /* Set Serial baud rate to 115200. Ensure Tools/USB_CDC_On_Boot is enabled if using Serial. */
     
    myCodeCell.Init(LIGHT); /*Initialisiere die Lichterkennung*/
    
     CoilPad1.Init();
     CoilPad2.Init();
    
     CoilPad1.Tone();
     CoilPad2.Tone();
     }
    
     void schleife() {
     wenn (myCodeCell.Run()) {
     /*Läuft alle 100 ms*/
     uint16_t Nähe = myCodeCell.Light_ProximityRead();
     Serial.println(Nähe);
     wenn (Nähe < 100) {
     CoilPad1.Run(1, 100, 400);
     CoilPad2.Run(1, 100, 400);
     } anders {
     Nähe = Nähe - 100;
     Nähe = Nähe / 10;
     wenn (Nähe > 100) {
     Nähe = 100;
     }
     CoilPad1.Drive(0, (Nähe));
     CoilPad2.Drive(0, (Nähe));
     }
     }
     }
    

    Passen Sie den Code gerne Ihren eigenen kreativen Ideen an oder fügen Sie Bewegungssensoren für eine neue Reaktion hinzu! Beginnen Sie noch heute mit unseren Arduino-Bibliotheken! Wenn Sie weitere Fragen zum CoilPad haben, schreiben Sie uns einfach eine E-Mail und wir helfen Ihnen gerne weiter!

    Vollständigen Artikel anzeigen


    Sozial

    Github

    • Um
    • Software
    • Education
    • Kontakt
    • FAQs
    • Bedingungen
    • Rückerstattung-Politik
    • Datenschutzrichtlinie

    Erfahren Sie als Erster von neuen Projekten und sichern Sie sich spannende Angebote!

    © 2025 Microbots.